Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.
نویسندگان
چکیده
Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as non-ovulatory cervicovaginal mucus, at a significant rate. We prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. In fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water at low shear, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by hyperviscoelastic mucus secretions. Rapid nanoparticle transport in mucus is made possible by the efficient partitioning of PEG to the particle surface during formulation. Biodegradable polymeric nanoparticles capable of overcoming human mucus barriers and providing sustained drug release open significant opportunities for improved drug and gene delivery at mucosal surfaces.
منابع مشابه
Zinc-imidazolate polymers (ZIPs) as a potential carrier to brain capillary endothelial cells
Herein, we report the synthesis and characterization of nanospheres of a biodegradable zinc-imidazolate polymers (ZIPs) as a proof-of-concept delivery vehicle into human brain endothelial cells, the main component of the blood-brain barrier (BBB). The ZIP particles can readily encapsulate functional molecules such as fluorophores and inorganic nanoparticles at the point of synthesis producing s...
متن کاملHighly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy.
Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The respiratory system, although readily acces...
متن کاملCoarse-grained modeling of mucus barrier properties.
We designed a simple coarse-grained model of the glycocalyx layer, or adhesive mucus layer (AML), covered by mucus gel (luminal mucus layer) using a polymer lattice model and stochastic sampling (replica exchange Monte Carlo) for canonical ensemble simulations. We assumed that mucin MUC16 is responsible for the structural properties of the AML. Other mucins that are much smaller in size and les...
متن کاملBiodegradable nanoparticles penetrate mucosal surfaces
Mucus secretions play an important role in the immune system by immobilizing foreign particles and neutralizing invading pathogens. The protective effect of these slippery linings that coat the eyes, airways, and other organs, however, prevents the effective delivery of therapeutics. Benjamin Tang et al. developed a biodegradable nanoparticle that may be able to penetrate thick mucus layers, in...
متن کاملPretreatment of Human Cervicovaginal Mucus with Pluronic F127 Enhances Nanoparticle Penetration without Compromising Mucus Barrier Properties to Herpes Simplex Virus
Mucosal drug delivery nanotechnologies are limited by the mucus barrier that protects nearly all epithelial surfaces not covered with skin. Most polymeric nanoparticles, including polystyrene nanoparticles (PS), strongly adhere to mucus, thereby limiting penetration and facilitating rapid clearance from the body. Here, we demonstrate that PS rapidly penetrate human cervicovaginal mucus (CVM), i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 46 شماره
صفحات -
تاریخ انتشار 2009